Command-line options
java -jar metarank-x.x.x.jar __ __
_____ _____/ |______ ____________ ____ | | __
/ \_/ __ \ __\__ \\_ __ \__ \ / \| |/ /
| Y Y \ ___/| | / __ \| | \// __ \| | \ <
|__|_| /\___ >__| (____ /__| (____ /___| /__|_ \
\/ \/ \/ \/ \/ \/ Metarank v:unknown
Usage: metarank <subcommand> <options>
Options:
-h, --help Show help message
-v, --version Show version of this program
Subcommand: import - import historical clickthrough data
-c, --config <arg> path to config file
-d, --data <arg> path to an input file
-f, --format <arg> input file format: json, snowplow, snowplow:tsv,
snowplow:json (optional, default=json)
-o, --offset <arg> offset: earliest, latest, ts=1663171036, last=1h
(optional, default=earliest)
-s, --sort-files-by <arg> how should multiple input files be sorted
(optional, default: name, values:
[name,last-modified]
-v, --validation <arg> should input validation be enabled (optional,
default=false)
-h, --help Show help message
Subcommand: train - train the ML model
-c, --config <arg> path to config file
-m, --model <arg> model name to train
-s, --split <arg> train/test splitting strategy (optional, default:
time=80%, options: random=N%,time=N%,hold_last=N%)
-h, --help Show help message
Subcommand: serve - run the inference API
-c, --config <arg> path to config file
-h, --help Show help message
Subcommand: standalone - import, train and serve at once
-c, --config <arg> path to config file
-d, --data <arg> path to an input file
-f, --format <arg> input file format: json, snowplow, snowplow:tsv,
snowplow:json (optional, default=json)
-o, --offset <arg> offset: earliest, latest, ts=1663171036, last=1h
(optional, default=earliest)
-s, --sort-files-by <arg> how should multiple input files be sorted
(optional, default: name, values:
[name,last-modified]
-v, --validation <arg> should input validation be enabled (optional,
default=false)
-h, --help Show help message
Subcommand: validate - run the input data validation suite
-c, --config <arg> path to config file
-d, --data <arg> path to an input file
-f, --format <arg> input file format: json, snowplow, snowplow:tsv,
snowplow:json (optional, default=json)
-o, --offset <arg> offset: earliest, latest, ts=1663171036, last=1h
(optional, default=earliest)
-s, --sort-files-by <arg> how should multiple input files be sorted
(optional, default: name, values:
[name,last-modified]
-v, --validation <arg> should input validation be enabled (optional,
default=false)
-h, --help Show help message
Subcommand: sort - sort the dataset by timestamp
-d, --data <arg> path to a file/directory with input files
-o, --out <arg> path to an output file
-h, --help Show help message
Subcommand: autofeature - generate reference config based on existing data
-c, --cat-threshold <arg> min threshold of category frequency, when its
considered a catergory (optional, default=0.003)
-d, --data <arg> path to an input file
-f, --format <arg> input file format: json, snowplow, snowplow:tsv,
snowplow:json (optional, default=json)
-o, --offset <arg> offset: earliest, latest, ts=1663171036, last=1h
(optional, default=earliest)
--out <arg> path to an output config file
-r, --ruleset <arg> set of rules to generate config: stable, all
(optional, default=stable, values: [stable, all])
-s, --sort-files-by <arg> how should multiple input files be sorted
(optional, default: name, values:
[name,last-modified]
-v, --validation <arg> should input validation be enabled (optional,
default=false)
-h, --help Show help message
Subcommand: export - export training dataset for hyperparameter optimization
-c, --config <arg> path to config file
-m, --model <arg> model name to export data for
-o, --out <arg> a directory to export model training files
--sample <arg> sampling ratio of exported training click-through events
-s, --split <arg> train/test splitting strategy (optional, default:
time=80%, options: random=N%,time=N%,hold_last=N%)
-h, --help Show help message
Subcommand: termfreq - compute term frequencies for the BM25 field_match extractor
-d, --data <arg> path to an input file
-f, --fields <arg> Comma-separated list of text fields
-l, --language <arg> Language to use for tokenization, stemming and
stopwords
-o, --out <arg> an file to write term-freq dict to
-h, --help Show help message
For all other tricks, consult the docs on https://docs.metarank.aiRunning modes
Validation
Historical data sorting
Auto feature generation
Training the model
Dataset export
BM25 term frequencies dictionary
Environment variables
Last updated
Was this helpful?